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Abstract. Developing a renormalization group approach, we study the hopping conductivity of nanocrys-
talline chains with different site energies. Exact calculations show that many parameters including nano-
sizes, randomness of grain distributions, lattice distortions, site energies, transition rates, Fermi energy, and
temperature influence the conductivity. Some new singular features, for example the frequency shift, the
amplitude fluctuations, and the interchange between “peak” and “valley” behavior of the imaginary part
of the conductivity can be caused by certain parameters mentioned above, while the interface distortions
modulate mainly the overall amplitudes of the conductivity at the whole frequency region.

PACS. 61.72.-y Defects and impurities in crystals; microstructure – 64.60.Ak Renormalization-group, frac-
tal, and percolation studies of phase transitions – 71.24.+q Electronic structure of clusters and nanopar-
ticles – 72.15.-v Electronic conduction in metals and alloys

1 Introduction

The size-dependent properties of nanocrystalline (NC)
solids have attracted considerable interest due to their po-
tential applications as well as the opening of new scientific
questions [1–7]. A drastic size reduction to a few nanome-
ters may lead to many special structures with the singular
physical properties. Many experiments have been made to
explore into the causes of the singular physical properties
induced by structural characters of NC solids [6,7]. Some
interesting results such as quantum size effects, have been
determined [6]. For instance, the energy gap between con-
duction band and valence band of NC silicon increases as
compared with that of bulk silicon [7]. With the decrease
of size of nano grain, the resistance of nano structured Pd
metal decreases [4]. In a real NC solid, nano-grains with
various numbers of atoms are distributed by a certain rule.
Such nano grains consist of crystalline sites and interface
sites, which take different site parameters, for example,
site-energy, site distance and transition rate. With this
kind of complicated structures, it seems hard to imagine
that one can easily get a clear theoretical understanding
of the causalities of singular properties with so many com-
plicated structural characters and different size regimes of
nano-materials [8]. This may be the reason that few theo-
retical works have touched on the investigation of physical
properties of NC solids, especially on the interesting con-
ductivity [12], even though some elegant theoretical efforts
have been made for calculating those kinds of complicated
systems [8–11].
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For the study of conductivity of solids, one of the most
effective theory is the Miller-Abrahams (M-A) hopping
conductivity theory [13], which was further applied for
complicated systems such as quasicrystals [12,14,15]. The
extended M-A equation on one-dimensional (1D) ac con-
ductivity is derived as [14,15]

iωCn(Vn − EXn) =
Vn−1 − Vn
Zn−1,n

+
Vn+1 − Vn
Zn,n+1

, (1)

linking the “voltage” variable Vn on site n of 1D chains
in the presence of a time-dependent external field Eeiωt,
where Xn is the co-ordinate of nth site. The factors Cn
and Zn,n+1, which are related to the temperature T , are
respectively given by

Cn = e2f(εn)[1− f(εn)]/kT, (2)

1/Zn,n+1 = e2f(εn)[1− f(εn+1)]Un/kT (3)

where εn is the site energy of an electron localized at the
nth site, and Un is the transition rate from the nth site to
(n+ 1)th one in the absence of external field. The Fermi
function f(εn) is defined as

f(εn) =
[
1 + exp

(
εn − εF

kT

)]−1

(4)

where εF is the Fermi energy. With denotation

In =
Vn+1 − Vn
Zn,n+1

, dn = Xn+1 −Xn, (5)
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Fig. 1. Schematic representations of NC chains. (a) A periodic two type-atom chain with the primary cell of nano-grains A
and B; (b) A random one type-atom chain with average atomic number N .

equation (1) can be rewritten by

iωCn(Vn −EXn) = In − In−1,

iωCn+1(Vn+1 −EXn+1) = In+1 − In, (6)

corresponding to the cases of the nth site and (n+1)th one,
respectively. The hopping conductivity is then given by

σ =
1
EL

∑
n

Indn, (7)

where L is the total length of chains studied.
Motivated by the work on the spectrum calculations

of NC solids [8], we present in this paper a set of renor-
malization group (RG) schemes to study effects of grain-
distribution factors, site parameters, temperature and the
Fermi energy on the hopping conductivity. The outline is
as follows: A simple NC chain is illustrated in Section 2, for
which a RG scheme is presented to calculate the hopping
conductivity. In Section 3, the improved model structures
of NC chains are considered, in which the atomic numbers
{Ni} of nano-grains are distributed by certain rules. Series
calculation results are discussed in Section 4. And a brief
summary is given in Section 5.

2 Conductivity of periodic two-atom
NC chain: Renormalization group

Let us consider a periodic NC chain [11], which consists of
two kinds of nano-grains A and B with numbers of atoms
NA and NB to be positioned alternately in a row (see
Fig. 1a). The primitive cell of the periodic chain consists
of A and B, i.e., A+B. The site parameters {εn, Un} take
one of eight sets of values {ε1, U1}, ..., and {ε8, U8}, of
which {ε1, U1} and {ε2, U2} is for two kinds of crystal
sites S1 and S2, while the six sets of values {ε3, U3}, ...,
and {ε8, U8} are for the interface sites S3, ..., and S8 (see
Fig. 1a). Analogously, the parameter dn can be divided
into seven kinds of values d1, ..., and d7 for the same rea-
sons. In order to simplify mathematical solution, we con-
sider firstly that site energy is independent of site n, i.e.,
εn = const. One can derive, from equations (6), that

(2 + iω/Un)In = In+1 + In−1 + iωEdn. (8)

Supposing that

En = 2 + iω/Un
tn,n+1 = tn−1,n = 1 (9)

we then have from equation (8)

EnIn = tn−1,nIn−1 + tn,n+1In+1 + iωEdn. (10)

Thus, the original chain is represent by a pseudo-chain
with pseudo-parameters {En, tn,n+1, dn}. One can find
that the pseudo-chain has the same NC construction rule
as that in the original chain. The pseudo-parameter En
also takes one of the eight values E1, ..., and E8 corre-
sponding to the classification of Un.

According to the fact that our NC chain is ordered, a
RG approach can be applied to calculate the conductivity
σ of the pseudo-chain. We can decimate the left- and right-
neighbors of each of a certain kind of sites in the pseudo-
chain by a RG transformation. So, the pseudo-chain
with the pseudo-parameters {En, tn,n+1, dn} is renor-
malized into a sub-chain with renormalized parameters
{E′n, t′n,n+1, d

′
n}. Iterating the RG transformation above,

we decimate further the new left- and right-neighbors of
the remained sites in the sub-chain. Then, the sub-chain
is reduced to a sub-subchain. The renormalized pseudo-
parameters {E(k)

n , t
(k)
n,n+1, d

(k)
n } after kth RG procession

satisfy the following recursion relations

E′n±(k+1) = En±(k+1) −
t2n±(k+1),n±k

E′n±k
, E′n±1 = En±1,

(11a)

d′n±(k+1) = dn±(k+1)+
tn±(k+1),n±kdn±k

E′n±k
, d′n±1 = dn±1

(11b)

t
(k+1)
n±1,n =

t
(k)
n±1,ntn±(k+1),n±k

E′n±k
, t

(1)
n±1,n = tn±1,n, (11c)

E(k+1)
n = E(k)

n −

[
t
(k+1)
n−1,n

]2
E′n−(k+1)

−

[
t
(k+1)
n,n+1

]2
E′n+(k+1)

, E(0)
n = En,

(11d)

d(k+1)
n = d(k)

n +
t
(k+1)
n−1,nd

′
n−(k+1)

E′n−(k+1)

+
t
(k+1)
n,n+1d

′
n+k+1

E′n+(k+1)

,

d(0)
n = dn, (11e)

After the RG transformation is iterated K =
[
N1+N2

2

]
−1

times (“[ ]” denotes the well-known integralisation opera-
tor), the original NC chain is reduced to a simplest peri-
odic chain with one renormalized site in a unit cell, which
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has the renormalized site parameters E(K)
n , t(K)

n±1,n, and

d
(K)
n . Thus the conductivity σ of original NC chain is

given, from equation (7), by

σ =
iω
2L

×
[

2(d(K)
n )2

E
(K)
n − t(K)

n−1,n − t
(K)
n,n+1

+
K∑
k=1

(d′n+k)2

E′n+k

+
K∑
k=1

(d′n−k)2

E′n−k

]
,

(12)

where L is the length of the primitive cell in original NC
chain.

3 Common NC chains and the RG method

In fact, real NC solids have much more complicated struc-
tures and properties [5] than that of the simplified model
given by Figure 1. Experiments have shown that the struc-
tural and physical characters of interface atoms in a nano-
grain are much different from those of crystalline cen-
ter atoms. And nano-sized grains with different number
of atoms Ni are arranged successively by a certain dis-
tribution rule. So we further deal with more common
NC models with different site energy and different grain-
arrangements such as quasiperiodic and random sequences
in this section. The influences of some factors on the hop-
ping conductivity of NC chains are discussed.

3.1 With site energies dependent on site position

Assuming site energies {εn} to depend on the site position
n, we obtain a universal equation, from equation (6),[

1
Cn

+
1

Cn+1
+

1− f(εn)
1− f(εn+1)

iω
CnUn

]
In =

1
Cn

In−1 +
1

Cn+1
In+1 + iωEdn. (13)

One can find that there exist many complicated variables
in above equation so that it seems to become much dif-
ficult to calculate the conductivity of the NC solids with
different site energy. However, with the definitions of

En =
[

1
Cn

+
1

Cn+1
+

1− f(εn)
1− f(εn+1)

iω
CnUn

]
,

tn−1,n =
1
Cn

, tn,n+1 =
1

Cn+1
, (14)

which are different from equation (9), equation (13) is
then rewritten as the same form as that of equation (10)
except for the values of parameters {En, tn,n+1, dn}.
And the chain with the site parameters {εn, Un, dn} is
changed into a pseudo-chain with the pseudo-site param-
eters {En, tn,n+1, dn}. However, the sites in the pseudo-
chain are arranged by the same construction rule as in

the original chain. Then, one can calculate the conduc-
tivity of the periodic two-atom NC chain with different
site energies by the same RG procedures as in the above
section.

For brevity, we assume that the original NC chain is
a periodic single type-atom chain, which consists of two
basic grains with different site numbers NA and NB. Ac-
cording to local environments of crystal sites and interface
sites, {εn, Un} take one of four sets of values: {ε1, U1}
for S1-type crystal sites, {ε2, U2} for S2-type interface
sites, {ε3, U3} for S3-type interface sites, and {ε4, U4} for
S4-type interface sites (see Fig. 1b). Accordingly, the pa-
rameter dn is one of four values {d1, d2, d3, d4} where d1

is both the lattice spacing and the distance between the
crystal site S1 and the interface site S2; d2, between the
interface site S2 and S3; d3, between the interface site S3

and S4, and d4 between interface site S4 and the next
one in the neighbor grain (see Fig. 1b). However, the pe-
riodic one type-atom NC chain can be represented by the
double type-atom chain shown in Section 2, if we replace
the values of site parameters in A-type grains for those in
B-type grains. This indicates that similar RG procedures
to that in Section 2 can be carried out to calculate the
conductivity of the periodic one type-atom NC chains.

3.2 Aperiodic NC chains

Contrary to the periodic NC systems presented above, we
further consider aperiodic one type-atom NC chains.

Let us consider the quasiperiodic Fibonacci NC
chain, which is constituted by two blocks of nano-
grains with different numbers of atoms NA and
NB arranged by a Fibonacci quasiperiodic sequence
{...NANBNANANBNANBNANANBNANANB...}. The
RG transformations can be applied to the Fibonacci
NC chain to calculate the conductivity. The RG method
developed in Section 2 can reduce the Fibonacci NC chain
into a simple Fibonacci quasiperiodic sub-chain (1 st RG
step). In the kth renormalized sub-chain, pseudo-sites
take renormalized parameters {E(k)

n , t
(k)
n,n+1, d

(k)
n } solved

by repeating the relations (11). According to the local en-
vironments of pseudo-sites in the sub-chain, we can again
separate them into three types α, β and γ with re-defined
pseudo-site parameters {εi, di, ti} (i = α, β or γ). Thus,
we use the RG transformation presented in reference [15]
to renormalize the Fibonacci sub-chain (2nd RG step).
Iterating infinitely the 2nd RG step, the sub-chain can
be reduced into a simplest periodic chain. Accordingly,
pseudo-site parameters {ε(n)

i , d
(n)
i , t

(n)
i } (i = α, β or

γ) satisfy the same recursion relations as relations (11)
in reference [15], where the symbol n notes the generation
of iterations of the 2nd RG transformations. Thus the
conductivity is given by

σ = σ′ +
iω
L

{
Nα[d(∞)

α ]2

ε
(∞)
α − 2t(∞)

α

+
∞∑
n=0

N
(n)
β [d(n)

β ]2

ε
(n)
β

}
(15)
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Fig. 2. The changes of the imaginary part peaked curves and the real part curves with plateaus of the conductivity of a
periodic two type-atom NC chain with logarithmic frequency. The site parameters {U1, U2, ..., U8} are chosen to be {1, 0.01,
0.95, 0.0105, 0.90, 0.011, 0.85, 0.0115} (in units of U1) and {d1, d2, ..., d7} to be {1, 0.9, 0.101, 0.89, 1.03, 0.87, 0.95} (in units
of d1). (a) The solid and dotted plots respectively correspond to the iso-energy site chains with NA/NB = 10/20 and 20/40.
(b) The solid and the dotted curves respectively correspond to the case that {εA, εB, εF} are {12, 11, 8} and {12, 10, 8} (arb.
units) for the chain with different site energies and NA/NB = 10/20 at temperature T = 300 (arb. units). The frequency is in
units of U1.

after infinite RG transformation developed in refer-
ence [15], where σ′, L, and Nα are the renormalized accu-
mulation of conductivity after the first step of RG trans-
formations, the total length of the Fibonacci chain, and
the number of α-type sites in the simplest chain, respec-
tively.

In a real random NC solid, atomic numbers of nano-
grains are distributed in a certain region by a function,
and arranged by random sequence. We can use Monte-
Carlo methods to produce the random numbers of atoms
{Ni} of nano-grains from the normal distribution function
with expectation number NP and half-maximum width
∆N . Then, we simulate a real random NC chain by ar-
ranging successively the nano-grains with random num-
ber {Ni}. Under certain exercisable approximations, we
can also apply the RG transformations in Section 2 to
decimate the original NC chain to be a random sub-chain.
The renormalized pseudo-parameters of the sub-chain can
be given by iterating the set of RG relation (11). Regard-
ing the random sub-chain itself with hundreds of sites as
a unit cell of a periodic sequence, one can develop further
RG transformations to decimate repeatedly the left- and
right-neighbors of a site in the sub-chain until it becomes
a simplest one-atom periodic sequence. Then, the conduc-
tivity of the random NC chains can also be calculated
exactly.

4 Calculations and discussion

We calculate conductivity of some kinds of the NC chains
in order to explore the relationship of conductivity of
NC systems with the quantum size effect, randomness of
nano-grain arrangements, lattice distortions, distributions

of numbers of atom of nano-grains, and so on, of 1D NC
chains. The effect of average number of atom N , site en-
ergy εn, site distance dn, distribution factors NP and ∆N ,
inverse temperature 1/T and Fermi energy εf on the con-
ductivity are also discussed.

4.1 Conductivity of periodic NC chains

To determine the basic features of the conductivity of NC
solids and the influence of average numbers of atoms of
nano-grains, we calculated variation of the hopping con-
ductivity of the NC chains presented in Section 2 with
frequency ω in units of U1 as shown in Figure 2, where
Figure 2a, b correspond to site-energy εn with the same
and two different values in two kinds of grains respec-
tively. One can find, from Figure 2a, that the shapes
of the plots of conductivity σ versus logarithmic fre-
quency logω for NC chains with iso-energy sites are
similar to those of Fibonacci quasicrystal calculated by
Newman et al. [15]. Contrary to the case in Figure 2a,
however, the site-energy difference of two different grains
may cause the interchange of “peak” and “valley” behav-
ior of the imaginary part of the conductivity at low fre-
quency ω = 10−18U1 (see Fig. 2b). On the other hand,
as the number of atoms of nano-grains decrease, the po-
sitions of “imaginary peaks” as well as of “real plateaus”
at both high- and low-frequencies shift towards higher fre-
quency direction, i.e., blue shift. This result is equivalent
to a corresponding statement for the phonon properties of
NC solids [11].

Figures 3 and 4 show the influences of the inverse tem-
perature 1/T and the Fermi energy εF on the conduc-
tivity of the periodic two type-atom NC chains with dif-
ferent site-energies. It can be seen that the conductivity
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Fig. 3. The changes of conductivity of the periodic two type-atom NC chain with inverse temperature 1/T . {εA, εB, εF} are
chosen to be {12, 11, 8} (in arb.units) and NA/NB = 10/20, The site parameters {U1, U2, ..., U8} and {d1, d2, ..., d7} are the
same as in the Figure 2. The solid and dotted curves represent the real and the imaginary parts of the conductivity at (a) high
frequency ω = 1U1 and (b) low-frequency ω = 1018U1.

Fig. 4. The changes of conductivity of the periodic two type-atom NC chain with the Fermi energy. The solid and dotted curves
represent the real and the imaginary parts of the conductivity at (a) high frequency ω = 1U1 and (b) low-frequency ω = 1018U1.
The parameters {εA, εB} take {12, 11} and NA/NB = 10/20, and other site parameters are the same as in the Figure 2b.

at high-frequency ω = 1U1 assumes maximum values
and is changed monotonously by 1/T and εF. However,
opposite to the high-frequency conductivity (ω = 1U1),
the conductivity at low-frequency ω = 1018U1 vibrates
strongly with both 1/T and εF (see Figs. 3b and 4b).

4.2 Randomness effect on the conductivity
of NC chains

In Figure 5, we show the variations of conductivity of ape-
riodic one type-atom NC chains with randomness of grain-
distributions. For the sake of comparability, we choose
that the average number of sites N in a grain equals
to a common value and that site-energies are constant
for all types of NC chains, while grain arrangements in
NC chains get more and more random from the periodic

chain to the random chain. For all types of NC chains
with N = 30, for example, we can take NA = 31 and
NB = 29 for a periodic chain, NA = 33 and NB = 25 for
a quasiperiodic Fibonacci chain, and NP /∆N = 30/5 and
30/10 for a random chain. The solid, dashed and dotted
curves in Figure 5a correspond to the conductivity of the
periodic, Fibonacci quasiperiodic and random NC chains,
respectively. The amplitude of conductivity at the high
frequency ω = 1U1 fluctuates with the changes of ran-
domness, while the positions of the “imaginary peaks” as
well as the “real plateaus” seems not to shift. At the low-
frequency ω = 1018U1, however, the positions of peaks and
plateaus of the imaginary and real parts of conductivity
shift to the direction of lower frequency i.e. red shift, with
the increase of randomness of grain-arrangements in NC
chains. Another interesting feature is shown in Figure 5b.
It can be seen that the position of “imaginary peak”
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(a) (b)
Fig. 5. The conductivity of the iso-energy one type-atom NC chains with different randomness. The average atomic number N =
30, and the site parameters {U1, U2, U3, U4} and {d1, d2, d3, d4} are chosen to be {1, 0.95, 0.9, 0.80} and {1, 1.01, 1.02, 1.05},
respectively. (a) The solid, dashed and dotted plots correspond to a periodic chain with NA = 31 and NB = 29, a quasiperiodic
Fibonacci chain with NA = 33 and NB = 25, and a random chain with normal distribution factors NP /∆N = 30/10, respectively.
(b) The solid and dotted plots correspond to the random chain with NP /∆N = 30/10 and 30/5, respectively. The frequency is
in units of U1.

Fig. 6. The conductivity of the random iso-energy one type-atom NC chain with distribution factors NP /∆N = 30/10.
(a) {d1, d2, d3, d4} are chosen to be {1, 1.01, 1.02, 1.05}, and {U1, U2, U3, U4} are chosen to be {1.0, 0.95, 0.9, 0.80} and
{1, 0.9, 0.8, 0.7} corresponding to the solid and dashed plots; (b) {U1, U2, U3, U4} take {1.0, 0.95, 0.9, 0.80}, and are chosen to
be {1.0, 1.01, 1.02, 1.05} and {1.0, 1.05, 1.1, 1.2} corresponding to the solid and dotted plots. The frequency is in units of U1.

of the random NC chain with normally distributed nano-
grains shifts to low frequency direction as the distribution
factor ∆N , which corresponds to the randomness of distri-
bution of grains, changes from 5 to 10. This may provide
an indirect identification to that low-frequency conductiv-
ity treats red shift by the increase of randomness of grain
arrangements.

Additionally, we will discuss the conductivity property
of a random NC chains with regard to the increase of the
hopping transition rates Un and lattice distance dn. Fig-
ure 6a shows that as the changes of transition rates Un
increase, the overall amplitudes of conductivity of ran-
dom NC chains decrease at the whole frequency region
except that the “imaginary peak” increases at high fre-

quency ω = 1U1. However, the influence of lattice dis-
tortions is contrary to that of changes of the transition
rates Un, which can be seen from Figure 6b. Meanwhile,
an inflated example is shown in Figure 7a, for which
the distance d4 between two interface sites, belonging to
two different nano-grains, gets a very large change. It is
found that the peak at high frequency shifts strenuously
to higher frequency direction as the change of distance
d4 increases. These features indicate that the changes
of distances of interface sites modulate mainly the posi-
tion of the high-frequency peak, as well as the amplitude
of conductivity of NC chains at the whole frequency re-
gion. Compared to Figure 2a, Figure 7b shows the change
of the conductivity with the average numbers of atoms
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Fig. 7. The conductivity of the random one type-atom iso-energy NC chain with {U1, U2, U3, U4} = {1.0, 0.95, 0.9, 0.80} and
{d1, d2, d3} = {1, 1.01, 1.02}. (a) NP /∆N = 30/10, and d4 is 1.05 in the solid plot and 1.50 in the dashed plot. (b) d4 = 1.05,
and NP /∆N = 30/10 in the solid plot and NP /∆N = 40/10 in the dotted plot. The frequency is in units of U1.

of the nano-grains. Similar to the case of periodic double
type-atom NC chains, a blue shift of “imaginary peak”
of conductivity is produced clearly at low frequency by
the decrease of average atomic numbers of nano-grains for
random one-atom NC chains.

5 Summary

We presented two types of NC chains: One is the two
type-atom periodic chains, of which the primary cell is
composed of nano-grain A and B with numbers of atoms
NA and NB. The other is the one type-atom chain, of
which nano-grains with atom-numbers {Ni} are arranged
by a rule. As for the second type, we consider three kinds
of chains. One is a periodic one type-atom NC chain with
two nano-grains with NA and NB atoms alternately ar-
ranged by a periodic sequence. Second is a quasiperiodic
NC chain with two nano-grains NA and NB arranged in a
Fibonacci sequence and third, a random NC chains with
different nano-size grains {Ni} of which atomic numbers
are distributed by the normal distribution function with
the distribution factors NP /∆N . By developing series of
RG transformations, we calculate the conductivity of NC
chains in terms of above 1D NC models. For the mecha-
nism of quantum size effects, the effects of lattice distor-
tions and grain distributions, and several relevant phys-
ical parameters on the conductivity are discussed. It is
found that the decreases of both average atomic number
and randomness of nano-grain distributions lead to a blue
shift of the peak of the imaginary part of the low frequency
conductivity of NC chains. However, the increase of inter-
face distances of NC chains make the high-frequency peak,
not the low-frequency peak, shift to higher frequency di-
rection. Meanwhile the amplitude of conductivity at the
whole frequency region fluctuates with the changes of site
distances dn and the transition rates Un. An additional
singular feature is that the change of site energies causes

the mutual interchange of “peak” and “valley” behavior
of the imaginary part of the low-frequency conductivity
of NC chains. Furthermore, low-frequency conductivity of
NC chains vibrates strongly with the changes of inverse
temperature 1/T and the Fermi energy εF.

This work was supported by the National Natural Sci-
ence Foundation of China (No: NNSFC59871044 and No:
NNSFC19704100) and partly by Hu’nan Provincial Natural
Science Foundation of China.
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